(1)

wherein R¹ and R² are independently selected from H, C_1 - C_6 alkyl, C_1 - C_6 substituted alkyl, C_6 - C_{20} aryl, C_6 - C_{20} substituted aryl, C_6 - C_{20} arylalkyl, C_6 - C_{20} substituted arylalkyl, acyloxymethyl esters — $CH_2C(=O)R^9$ and acyloxymethyl carbonates — $CH_2C(=O)OR^9$ where R^9 is C_1 - C_6 alkyl, C_1 - C_6 substituted alkyl, C_6 - C_{20} aryl and C_6 - C_{20} substituted aryl;

 R^3 is selected from H, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ substituted alkyl, or CH_2OR^8 where R^8 is $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ hydroxyalkyl and $C_1\text{-}C_6$ haloalkyl;

R⁴ and R⁵ are independently selected from H, NH₂, NHR and NR₂ where R is C₁-C₆ alkyl; and

 R^6 and R^7 are independently selected from H and C_1 - C_6 alkyl;

or a physiologically functional derivative thereof;

in combination with an effective amount of a compound of the formula

wherein B is selected from adenine, guanine, cytosine, uracil, thymine, 7-deazaadenine, 7-deazaguanine, 7-deaza-8-azaguanine, 7-deaza-8-azaguanine, 7-deaza-8-azaadenine, inosine, nebularine, nitropyrrole, nitroindole, 2-aminopurine, 2-amino-6-chloropurine, 2,6-diaminopurine, hypoxanthine, pseudouridine, 45 5-fluorocytosine, 5-chlorocytosine, 5-bromocytosine, 5-io-docytosine, pseudocytosine, pseudoisocytosine, 5-propynyl-cytosine, isocytosine, isoguanine, 7-deazaguanine, 2-thiopyrimidine, 6-thioguanine, 4-thiothymine, 4-thiouracil, O⁶-methylguanine, N⁶-methyladenine, O⁴-methylthymine, 50 5,6-dihydrothymine, 5,6-dihydrouracil, 4-methylindole, and a pyrazolo[3,4-D]pyrimidine; and

R is selected from H, C_1 - C_{18} alkyl, C_1 - C_{18} substituted alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} substituted alkenyl, C_1 - C_{18} alkynyl, C_2 - C_{18} substituted alkynyl, C_6 - C_{20} aryl, C_6 - C_{20} substituted aryl, C_2 - C_{20} heterocycle, C_2 - C_{20} substituted heterocycle, phosphonate, phosphophosphonate, diphosphophosphonate, phosphate, triphosphate, polyethyleneoxy or a physiologically functional derivative thereof; and

a pharmaceutically acceptable carrier.

B2. A composition of embodiment A1 wherein, in formula 1, R¹ and R² are independently selected from H, C_1 - C_6 alkyl, C_1 - C_6 substituted alkyl, C_6 - C_{20} aryl, C_6 - C_{20} substituted aryl, C_6 - C_{20} arylalkyl, C_6 - C_{20} substituted arylalkyl, acyloxymethyl esters —CH $_2$ C(—O)R 9 and acyloxymethyl carbonates —CH $_2$ C(—O)OR 9 where R 9 is C_1 - C_6 alkyl, C_1 - C_6 substi-

tuted alkyl, C_6 - C_{20} aryl and C_6 - C_{20} substituted aryl; and R^3R^4 , R^5 , R^6 and R^7 are independently H or C_1 - C_6 alkyl. C3. A composition of embodiment A1 wherein, in formula 2, B is cytosine or a 5-halocytosine.

5 D4. A composition of embodiment A1 wherein, in formula 1, R^1 and R^2 are independently selected from H, C_1 - C_6 alkyl, C_1 - C_6 substituted alkyl, C_6 - C_{20} aryl, C_6 - C_{20} substituted aryl, C_6 - C_{20} substituted arylalkyl, acyloxymethyl esters —CH $_2$ C(\equiv O)R 9 and acyloxymethyl carbonates 10 CH $_2$ C(\equiv O)OR 9 where R^9 is C_1 - C_6 alkyl, C_1 - C_6 substituted alkyl, C_6 - C_{20} aryl and C_6 - C_{20} substituted aryl; and R^3 R 4 , R^5 , R^6 and R^7 are independently H or C_1 - C_6 alkyl; and, in formula 2, B is cytosine or a 5-halocytosine.

E5. A composition of embodiment D 4 wherein, in formula 1, R^1 and R^2 are independently selected from H, acyloxymethyl esters — $CH_2C(=O)R^9$ and acyloxymethyl carbonates CH_2C (=O)OR 9 where R^9 is C_1 - C_6 alkyl; and R^3 , R^4 , R^5 , R^6 and R^7 are independently H or C_1 - C_6 alkyl; and, in formula 2, B is cytosine or a 5-halocytosine and R is H.

F6. A composition of embodiment E5 wherein, in formula 1, R¹ and R² are independently selected from H and —CH₂C (=O)OCH(CH₃)₂; R³ is —CH₃; and R⁴, R⁵, R⁶ and R⁷ are H; and, in formula 2, B is 5-fluorocytosine and R is H.

G7. A pharmaceutical composition comprising a pharmaceutically effective amount of [2-(6-amino-purin-9-yl)-1-methyl-ethoxymethyl]-phosphonic acid diisopropoxycarbonyloxymethyl ester fumarate (tenofovir disoproxil fumarate) or a physiologically functional derivative thereof and a pharmaceutically effective amount of (2R,5S)-4-amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one (emtricitabine) or a physiologically functional derivative thereof; and a pharmaceutically acceptable carrier.

H8. A pharmaceutical formulation of embodiment A1 to G7 further comprising a third active ingredient selected from the group consisting of a protease inhibitor, a nucleoside or nucleotide reverse transcriptase inhibitor, a non-nucleoside reverse transcriptase inhibitor, and an integrase inhibitor.

19. A pharmaceutical formulation of embodiments A1 to H8 in unit dosage form.

o J10. A method for the treatment or prevention of the symptoms or effects of an HIV infection in an infected animal which comprises administering to said animal a pharmaceutical composition of embodiments claims A1 to 19.

We claim:

1. A chemically stable fixed-dose combination comprising 300 mg of tenofovir disoproxil fumarate and 200 mg of emtricitabine wherein the combination exhibits less than 10% degradation of the tenofovir disoproxil fumarate and emtricitabine after six months at $40^{\circ}\,\text{C}./75\%$ relative humidity when packaged and stored with silica gel desiccant at $40^{\circ}\,\text{C}./70\%$ relative humidity.

2. The chemically stable combination of claim 1 in the form of a pharmaceutical dosage form.

3. The chemically stable combination of claim 2 wherein the dosage form is oral.

4. The pharmaceutical dosage form of claim **2** wherein the tenofovir disoproxil fumarate is not substantially degraded.

5. The pharmaceutical dosage form of claim 4 where there is less than 10% degradation of tenofovir disoproxil fumarate over a 24-hour period.

6. The pharmaceutical dosage form of claim **4** where there is less than 1% degradation of tenofovir disoproxil fumarate over a 24-hour period.

7. The pharmaceutical dosage form of claim 4 where there is less than 0.1% degradation of tenofovir disoproxil fumarate over a 24-hour period.